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Polarizabilities of shallow donors and acceptors in infinite-barrier GaAs/Ga
1~x

Al
x
As quantum

wells have been calculated using the Hasse variational method within the effective mass approxi-
mation. The effect of spatially dependent screening on polarizabilities is taken into account with
an r-dependent dielectric response. The effects of electric and magnetic fields are also presented.
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1. Introduction

In the past few years, there had been considerable theoretical and experimental interest in the
effect of confinement on shallow donor impurities in quantum well structures [1–3]. Bastard [4] was
the first to treat this problem theoretically by considering a hydrogenic impurity in a quantum well
with infinite-barrier height under the assumption of a parabolic conduction band.

In all of the above theoretical calculations, the Coulombic interaction energy has been scaled
by a static dielectric constant M

0
. Csavinszky et al. [5] and Oliveira et al. [6] considered the dielectric

response to the impurity in a quantum well of infinite depth with r-dependent dielectric function
characteristic of bulk GaAs material.

The polarizability in low dimensional semiconducting systems, quantum well (QW), quantum
well wire (QWW) and quantum Dot (QOD) have been calculated for shallow donors [7–12]. Recent-
ly, the effect of screening on the polarizability of shallow donors and acceptors in finite-barrier
quantum wells has been studied [13].

In this work, the polarizabilities of shallow donors and acceptors in infinite-quantum wells have
been calculated using Hasse variational method, where the spatially dependent screening effect on it is
investigated, with different values of magnetic field. The effect of electric field on binding energy is also
reported. Polarizability results for infinite and finite barrier quantum wells are compared.

In general, the calculation of polarizabilities of the acceptors in a quantum well is more
complicated than that of the donors because of the more complex valence-band structure [14]. There-
fore, a simple one-band model is used similar to that used for donors by [4,5,15] rather than the four
valence-band model used in [14].

2. Theory

The Hamiltonian for a hydrogenic impurity located at the center of the well in the presence
of weak applied electric field and magnetic field B in a single GaAs quantum well of infinite depth
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can be written, within the framework of an effective mass approximation, as
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where curl A\B is the magnetic field. Using the symmetric gauge A\([B
y
/2, B

x
/2, 0), the Hamil-
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where x
c
\eB/m* c is the cyclotron frequency and h~L

z
\(xP

y
[yP

x
).

The carrier effective mass and the GaAs spatially dependent screening are given by m* and
M(r) respectively. The spatially dependent dielectric screening used in the calculation is the one pro-
posed by Hermanson [16].

M~1(r)\M~1
0

](1[M~1
0

)exp([r/b) (3)

where M
0
\13.1 is the static dielectric constant, and b\0.58 Å is the characteristic value for the

screening parameter, as assumed by Oliveira [6].
Introducing the effective Rydberg Ry*\m*e4/2h~2M2 as a unit of energy, and the effective Bohr

radius a*
B
\h~2M/m*e2 as a unit of length, one obtains
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where g\DeDa*F is a measure of the electric field strength, and c\h~x
c
/2 Ry*. V(z) in eqn (1) is the

infinite-barrier potential which confines the carrier within the well of width L, is given by:
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(5)

The polarizability a is defined by:

E(B,g)\E(B,0)[
1
2

ag2, (6)

i.e.

a\2 lim
g?0
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The trial wave function used in the Hasse variational method is

W\W
0
(1]kê · r?) (8)

where

W
0
\D cos(fz)exp[[1/a(q2]z2)1@2] (9)

with f\p/L, and D is a normalization constant, where k and a are used as variational parameters.
With the trial function eqn (8), the energy expectation for donors and acceptors becomes,
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Fig. 1. Impurity binding energy E
B

for acceptor as a function of well width L for c\0 and c\2. The dashed
curve is for a spatially dependent M\M(r); the solid curve is for constant M\M
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\Sê · r?W

0
DzDW

0
T, (13)

N
1
\SW

0
DW

0
T, (14)

N
2
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Dê · r?W

0
T,

(15)

The value of k that minimizes the energy expression SET is obtained as:
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Substituting this value of k into eqn (10), and expanding SET binomially in powers of g, one
gets for the polarizability,
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Fig. 3. Impurity binding energy E
B

for acceptor as a function of magnetic field c. The dashed curve is for a
spatially dependent M\M(r); the solid curve is for constant M\M
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Fig. 2. Impurity binding energy E
B

for acceptor as a function of electric field F for c\0 and c\2. The dashed
curve is for a spatially dependent M\M(r); the solid curve is for constant M\M
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Fig. 4. Polarizability values a for acceptor as a function of well width L for c\0 and c\2. The dashed curve
is for a spatially dependent M\M(r); the solid curve is for constant M\M
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3. Results and conclusions

The results in reduced atomic units (a.u.*) are presented, which correspond to a length unit of an
effective Bohr radius a*, and an energy unit of an effective Rydberg Ry*. For GaAs these units are
a*\103.5 Å and Ry*\5.31 meV for donors (electrons), and a*\20.4 Å and Ry*\26.9 meV for
acceptors (hole). The effective mass m*\0.067 m

0
and m*\0.34 m

0
for both donors (electrons) and

acceptors (hole), respectively are used. The effect of electric field on the impurity binding energy
E
B
\E

0
[SHT

min
is used, by first calculating E

B
variationally without the electric and magnetic field

terms and with wavefunction eqn (8) taking k\0, where E
0
\(p/L)2 is the subband energy for the

ground state. In this calculation, a appearing in W
0

is treated as a variational parameter. The calcula-
tion with full W is repeated to calculate E

B
including the electric field term. The impurity binding energy

as a function of well width is shown in Fig. 1, for c\0 and c\2, where c\1 corresponds to a magnetic
field of 67.4 kG. The calculated binding energy E

B
as a function of electric field F is shown in Fig. 2, for

c\0 and c\2, taking into account the shift in subband energy DE
0

introduced by Bastard et al. [17],
using the second-order perturbation theory approach. Figure 3 shows the binding energy as a function
of magnetic field c. Figs 1, 2 and 3 show that the binding energy increases as the magnetic field increases,
as a result of increasing confinement, whereas Fig. 2 shows that the electric field reduces the binding
energy effectively as a consequence of the displacement of the electronic charge with respect to the
impurity position. As also seen from the figures, the effect of spatially dependent M(r) dielectric function
which, as opposed to a dielectric constant M

0
, leads to an increase in the binding energy of the impurity.

As a result, the effect of spatially dependent screening is negligible for shallow donors, because
of the large (electron) effective Bohr radius (a*\103.5 Å), whereas its effect is quite important for
acceptors due to the relatively small (hole) effective Bohr radius (a*\20.4 Å).

SM ARTICLE 763

Superlattices and Microstructures, Vol. 20, No. 2, 1996 177



10

10

4

2

2 4 60
L/a*

8

α 
(1

0+5
 A

°) 6

8

Finite-barrier
Infinite-barrier

Fig. 5. Polarizability values a for donor as a function of well width L for finite and infinite barrier well.

In Fig. 4, the values of polarizability a for acceptor as a function of well width for c\0 and
c\2, are presented. The calculated polarizability values have reasonable magnitudes and reflect
correctly the effect of a magnetic field which confines the electron more and reduces the polarizability.
The effect of spatially dependent screening function M\M(r) on polarizability values (dashed curves)
are clearly shown, which reduces the polarizability values.

The polarizability values for the finite- and infinite-barrier quantum wells, as a function of
well width L are presented in Fig. 5, the confinement effect for the infinite case are clearly shown,
which reduces the polarizability values as expected.

It should be noted that as the r-dependent dielectric function used in this paper possesses
spherical symmetry, the neglected two-dimensional effect may have some important contributions to
the binding energy of the screening impurity.

The best way to treat screening effects is through a first-principles calculation, which unfor-
tunately lacks the simplicity of the present calculation.
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