Chapter 7: Quick Sort

Quick Sort

Partition set into two using randomly chosen pivot

sort the first half.

sort the second half.
Quick Sort

Glue pieces together.
(No real work)

Quick Sort

Quicksort

Quicksort advantages:
- Sorts in place
- Sorts $O(n \lg n)$ in the average case
- Very efficient in practice

Quicksort disadvantages:
- Sorts $O(n^2)$ in the worst case
- Not stable
- Does not preserve the relative order of elements with equal keys
- Sorting algorithm (stable) if 2 records with same key stay in original order
- But in practice, it’s quick
- And the worst case doesn’t happen often … sorted

Another divide-and-conquer algorithm:
- Divide: $A[p…r]$ is partitioned (rearranged) into two nonempty subarrays $A[p…q-1]$ and $A[q+1…r]$ s.t. each element of $A[p…q-1]$ is less than or equal to each element of $A[q+1…r]$. Index q is computed here, called pivot.
- Conquer: two subarrays are sorted by recursive calls to quicksort.
- Combine: unlike merge sort, no work needed since the subarrays are sorted in place already.

The basic algorithm to sort an array A consists of the following four easy steps:
- If the number of elements in A is 0 or 1, then return
- Pick any element v in A. This is called the pivot
- Partition $A-\{v\}$ (the remaining elements in A) into two disjoint groups:
 - $A_1 = \{x \in A-\{v\} | x \leq v\}$ and
 - $A_2 = \{x \in A-\{v\} | x \geq v\}$
- return
 - $\{\text{quicksort}(A_1) \text{ followed by } v \text{ followed by } \text{quicksort}(A_2)\}$
Quicksort
- Small instance has \(n \leq 1 \)
 - Every small instance is a sorted instance
- To sort a large instance:
 - select a pivot element from out of the \(n \) elements
- Partition the \(n \) elements into 3 groups left, middle and right
 - The middle group contains only the pivot element
 - All elements in the left group are \(\leq \) pivot
 - All elements in the right group are \(\geq \) pivot
- Sort left and right groups recursively
- Answer is sorted left group, followed by middle group followed by sorted right group

Example

\[6 \quad 2 \quad 8 \quad 5 \quad 11 \quad 10 \quad 4 \quad 1 \quad 9 \quad 7 \quad 3 \]

Use 6 as the pivot

\[2 \quad 5 \quad 4 \quad 1 \quad 3 \quad 6 \quad 7 \quad 9 \quad 10 \quad 11 \quad 8 \]

Sort left and right groups recursively

Quicksort Code

```c
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r)
        Quicksort(A, p , q-1)
        Quicksort(A, q+1 , r)
    }
}
```

- Initial call is \(\text{Quicksort}(A, 1, n) \), where \(n \) in the length of \(A \)

Partition
- Clearly, all the action takes place in the \text{partition()}\ function
 - Rearranges the subarray in place
 - End result:
 - Two subarrays
 - All values in first subarray \(\leq \) all values in second
 - Returns the index of the “pivot” element separating the two subarrays
Partition Code

```c
Partition(A, p, r) {
    x = A[r] // x is pivot
    i = p - 1
    for j = p to r - 1 {
        do if A[j] <= x 
            then 
                i = i + 1
        } 
    return i+1  // partition() runs in O(n) time
}
```

Partition Example

\[A = \{2, 8, 7, 1, 3, 5, 6, 4\} \]

13

Partition Example Explanation

- **Red** shaded elements are in the first partition with values \(\leq x \) (pivot)
- **Gray** shaded elements are in the second partition with values \(\geq x \) (pivot)
- The unshaded elements have no yet been put in one of the first two partitions
- The final white element is the pivot

Choice Of Pivot

- Pivot is the **rightmost** element in list that is to be sorted
 - Textbook implementation does this
- **Randomly** select one of the elements to be sorted as the pivot
 - When sorting \(A[6:20] \), generate a random number \(r \) in the range \([6, 20]\)
 - Use \(A[i] \) as the pivot
Choice Of Pivot

- **Median-of-Three** rule - from the leftmost, middle, and rightmost elements of the list to be sorted, select the one with median key as the pivot.
 - Select the element with median (i.e., middle) key.

When the pivot is picked at random or when the median-of-three rule is used, we can use the quicksort code of the *textbook provided*, we first swap the rightmost element and the chosen pivot.

Runtime of Quicksort

- **Worst case:**
 - every time nothing to move
 - pivot = left (right) end of subarray
 - $\Theta(n^2)$

Worst Case Partitioning

- The running time of quicksort depends on whether the partitioning is **balanced** or not.
 - $\Theta(n)$ time to partition an array of n elements
 - Let $T(n)$ be the time needed to sort n elements
 - $T(0) = T(1) = c$, where c is a constant
 - When $n > 1$,
 - $T(n) = T(|left|) + T(|right|) + \Theta(n)$
 - $T(n)$ is maximum (worst-case) when either $|left| = 0$ or $|right| = 0$ following each partitioning
Worst Case Partitioning

- Worst-Case Performance (unbalanced):
 - $T(n) = T(1) + T(n-1) + \Theta(n)$
 - partitioning takes $\Theta(n)$
 - $= (2 + 3 + 4 + \ldots + n-1 + n) + n = \sum_{k=2}^{n} \Theta(k) + n = \Theta(\sum_{k=2}^{n} k) + n = \Theta(n^2)$

- This occurs when
 - the input is completely sorted
 - or when
 - the pivot is always the smallest (largest) element

Best Case Partitioning

- When the partitioning procedure produces two regions of size $\frac{n}{2}$, we get a balanced partition with best case performance:
 - $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \log n)$

- Average complexity is also $\Theta(n \log n)$

Figure 8.2 A recursion tree for Quicksort in which the **PARTITION** procedure always puts only a single element on one side of the partition (the worst case). The resulting running time is $\Theta(n^2)$.

Figure 8.3 A recursion tree for Quicksort in which **PARTITION** always balances the two sides of the partition equally (the best case). The resulting running time is $\Theta(n \log n)$.

Average Case

- Assuming random input, average-case running time is much closer to $\Theta(n \lg n)$ than $\Theta(n^2)$

- First, a more intuitive explanation/example:
 - Suppose that `partition()` always produces a 9-to-1 proportional split. This looks quite unbalanced!
 - The recurrence is thus:
 \[T(n) = T(9n/10) + T(n/10) + \Theta(n) = \Theta(n \lg n) \]
 - **How deep will the recursion go?**

Average Case

- Every level of the tree has cost cn, until a boundary condition is reached at depth $\log_{10} n = \Theta(\lg n)$, and then the levels have cost at most cn.
- The recursion terminates at depth $\log_{10}/9 n= \Theta(n \lg n)$.
- The total cost of quicksort is therefore $O(n \lg n)$.
- Intuitively, a real-life run of quicksort will produce a mix of “bad” and “good” splits
 - Randomly distributed among the recursion tree
 - Pretend for intuition that they alternate between best-case $n/2:n/2$ and worst-case $(n-1):1$
Intuition for the Average Case

- Suppose, we alternate lucky and unlucky cases to get an average behavior

 \[
 L(n) = 2U(n/2) + \Theta(n) \quad \text{lucky}
 \]

 \[
 U(n) = L(n-1) + \Theta(n) \quad \text{unlucky}
 \]

 we consequently get

 \[
 L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)
 \]

 which results in

 \[
 \Theta(n \log n)
 \]

The combination of good and bad splits would result in

\[T(n) = \Theta(n \log n) \]

but with slightly larger constant hidden by the \(\Theta \)-notation.

Randomized Quicksort

An algorithm is randomized if its behavior is determined not only by the input but also by values produced by a random-number generator.

- This ensures that the pivot element is equally likely to be any of input elements.
- We can sometimes add randomization to an algorithm in order to obtain good average-case performance over all inputs.

Randomized Quicksort

Randomized-Partition(\(A, p, r \))
1. \(i \leftarrow \text{Random}(p, r) \)
2. exchange \(A[i] \leftrightarrow A[r] \)
3. return Partition(\(A, p, r \))

Randomized-Quicksort(\(A, p, r \))
1. if \(p < r \)
2. then \(q \leftarrow \text{Randomized-Partition}(A, p, r) \)
3. Randomized-Quicksort(\(A, p, q-1 \))
4. Randomized-Quicksort(\(A, q+1, r \))

Summary: Quicksort

- In worst-case, efficiency is \(\Theta(n^2) \)
 - But easy to avoid the worst-case
- On average, efficiency is \(\Theta(n \log n) \)
- Better space-complexity than mergesort.
- In practice, runs fast and widely used
 - Many ways to tune its performance
 - Can be combined effectively
- Various strategies for Partition