Mechanistic and Computational Study of Cinnabar Phase Transformation: Application and Implications to the Preservation of this Pigment in Historical Painting (2005-02)

Hamdallah Bearat's picture
Journal Title, Volume, Page: 
through Grant MT-2210-02-NC-12 from the National Center for Preservation Technology and Training (NCPTT) National Park Service U.S. Department of the Interior
Year of Publication: 
2005
Authors: 
Hamdallah Béarat
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704, USA
Current Affiliation: 
Department of Materials Science, Faculty of Engineering and Information Technology, An-Najah National University, Nablus. Palestine
Andrew Chizmeshya
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704, USA
Renu Sharma
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704, USA
Andrew Chizmeshya
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704, USA
Alix Barbet
CEPMR, CNRS, Ecole Normale Supériore, 75005 Paris, France
Michel Fuchs
Institut d'Archéologie et des Sciences de l'Antiquité, Université de Lausanne, Lausane, Switzerland
Preferred Abstract (Original): 

Blackening of cinnabar (α-HgS) constituted a dilemma for ancient artists and modern conservators as well. In this research program, the mechanisms of HgS phase transformation were studied using several analytical techniques: scanning electron microscopy, energy dispersive spectroscopy, X-ray powder diffraction, Raman spectroscopy, and cathodoluminescence spectroscopy. The experimental study was coupled with advanced computational modeling of materials using Ab initio density functional theory methods. Natural and synthetic standards representing both hexagonal (α-HgS) and cubic (β-HgS) polymorphs of mercuric sulfide were submitted to several kinds of physical treatment to induce transformation in either direction and the products were characterized using appropriate analytical method.Experimental work shows that physical parameters such as radiation, mechanical activation or thermal treatment can induce the transformation in one or the other direction. The results obtained to date, suggest that blackening is due to amorphization and formation of an intermediate phase, thus following a “nucleation and growth” mechanism. Meanwhile, modeling of the structure shows that the polymorphic difference is primarily associated with the expansion of the c-axis in going from cinnabar to metacinnabar. It also indicates that optical behavior of these two phases is inherently related to the structure of their respective band gaps. The combination of the two approaches has thus proved very powerful in understanding the mechanism of the phase transformation, which is central to any successful preservation of the red pigment and to the restoration of its color once blackened. This research was made possible through Grant MT-2210-02-NC-12 from the National Center for Preservation Technology and Training (NCPTT).

AttachmentSize
Mechanistic_and_Computational_Study_of_Cinnabar_Phase_Transformation_Application_and_Implications_to_the_Preservation_of_this_Pigment_in_Historical_Painting_(2005-02).pdf1.34 MB